Dose differences between the three dose calculation algorithms in Leksell GammaPlan

نویسندگان

  • Andy (Yuanguang) Xu
  • Jagdish Bhatnagar
  • Greg Bednarz
  • Ajay Niranjan
  • John Flickinger
  • L. Dade Lunsford
  • M. Saiful Huq
چکیده

The purpose of this study was to evaluate the dose differences introduced by the TMR 10 and the convolution dose calculation algorithms in GammaPlan version 10, as compared to the TMR classic algorithm in the previous versions of GammaPlan. Computed axial tomographic images of a polystyrene phantom and a human head were acquired using a GE LightSpeed VCT scanner. A treatment target with a prescription dose of 20 Gy to 50% isodose line was defined in the phantom or the head CT set. The treatment times for single collimator, single shot placements were calculated using the three dose calculation algorithms in GammaPlan version 10. Four comparative studies were conducted: i) the dose matrix position was varied every 10 mm along the x-, y-, z-axes of the stereotactic coordinate system inside the phantom and the treatment times were compared on each matrix for the three collimators of the Gamma Knife Perfexion and the four collimators of the 4C;ii) the study was repeated for the human head CT dataset; iii) the matrix position was varied every 20 mm in the X and the Y directions on the central slice (Z = 100mm) of the head CT and the shot times were compared on each matrix for the 8 mm collimator of both units; a total of 51 matrix positions were identified for each unit; iv) the above comparison was repeated for the head CT transverse slices with Z = 20, 40, 60, 80, 120, 140, and 160 mm. A total of 271 matrix positions were studied. Based on the comparison of the treatment times needed to deliver 20 Gy at 50% isodose line, the equivalent TMR classic dose of the TMR 10 algorithm is roughly a constant for each collimator of the 4C unit and is 97.5%, 98.5%, 98%, and 100% of the TMR 10 dose for the 18 mm, 14 mm, 8 mm, and the 4 mm collimators, respectively. The numbers for the three collimators of the Perfexion change with the shot positions in the range from 99% to 102% for both the phantom and the head CT. The minimum, maximum, and the mean values of the equivalent TMR classic doses of the convolution algorithm on the 271 voxels of the head CT are 99.5%, 111.5%, 106.5% of the convolution dose for the Perfexion, and 99%, 109%, 104.5% for the 4C unit. We identified a maximum decrease in delivered dose of 11.5% for treatment in the superior frontal/parietal vertex region of the head CT for older calculations lacking inhomogeneity correction to account for the greater percentage of the average beam path occupied by bone. The differences in the inferior temporal lobe and the cerebellum/neck regions are significantly less, owing to the counter-balancing effects of both bone and the air cavity inhomogeneities. The dose differences between the TMR 10 and the TMR classic are within ± 2.5% for a single shot placement on both Perfexion and 4C. Dose prescriptions based on the experiences with the TMR classic may need to be adjusted to accommodate the up to 11.5% difference between the convolution and the TMR classic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of skull shape approximations in Gamma Knife dose calculations

Doses in Leksell GammaPlan (Elekta, Stockholm, Sweden) are calculated for each shot by summing the contribution from the 201 radiation beams emitted by the Gamma Knife (Elekta), weighted for attenuation in the tissue traversed. The patient's head is modeled based on 24 skull measurements, from which the depth to the calculation point is determined for each beam. The limited number of measuremen...

متن کامل

Dosimetric Evaluation of Dose calculation algorithms of Monaco Treatment Planning System in the heterogeneities area

Introduction: In radiation therapy, the accuracy of dose calculations by a treatment planning system (TPS) is important to achieve tumor control and to spare normal tissue. Treatment planning system calculations in the heterogeneous situation may present significant inaccuracies. In this study, three different dose calculation algorithms, pencil beam (PB), collapsed cone (CC), ...

متن کامل

Dose distributions at extreme irradiation depths of gamma knife radiosurgery: EGS4 Monte Carlo calculations.

The accuracy of the dose planning system (Leksell GammaPlan), used in Gamma Knife (type B) radiosurgery at extreme irradiation depths, was verified using the Monte Carlo technique. EGS4 Monte Carlo calculations were employed to calculate the dose distribution along the x, y and z axes for an irradiation relatively shallow in a spherical bony cavity water phantom. Two different sizes of the coll...

متن کامل

Monte Carlo calculation of single-beam dose profiles used in a gamma knife treatment planning system.

The accuracy of single-beam dose profiles used in the algorithm of the Gamma Knife treatment planning system (Leksell GammaPlan) is verified. EGS4 Monte Carlo calculation was employed to calculate the dose distributions of single-beams in a spherical water phantom with diameter 160 mm. The beams were directed to the center of the phantom. Collimators of 4, 8, 14, and 18 mm sizes were studied. T...

متن کامل

Gamma Knife radiosurgery with CT image‐based dose calculation

The Leksell GammaPlan software version 10 introduces a CT image-based segmentation tool for automatic skull definition and a convolution dose calculation algorithm for tissue inhomogeneity correction. The purpose of this work was to evaluate the impact of these new approaches on routine clinical Gamma Knife treatment planning. Sixty-five patients who underwent CT image-guided Gamma Knife radios...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2013